

Mid-Toughened, High Strength, Damage-Resistant, Structural Epoxy Matrix

Product Data

Description

HexPly[®] 8552 is an amine cured, toughened epoxy resin system supplied with unidirectional or woven carbon or glass fibers. HexPly[®] 8552 is recommended for structural applications requiring high strength, stiffness, and damage tolerance. HexPly[®] 8552 was developed as a low flow system to operate in environments of up to 250°F.

Features

- Service Temperature up to 250°F
- Impact Tolerant
- Low Flow

Applications

HexPly[®] 8552 is a versatile epoxy matrix system, typical uses include:

Commercial Aerospace	Space and Defense	Industrial			
Primary Aircraft Structures	t Structures Aircraft Structures Automo				
Secondary Aircraft Structures	Helicopters	Machinery			
Engines	Missiles	Sports & Leisure			
Nacelles	Space Launchers	Medical Equipment			

Neat Resin Properties

0.0470 lb/in³ Density 392°F T_q dry - RDS 7700 T_g wet - RDS 7700 309°F Tensile strength 17.5 ksi Tensile modulus 0.677 msi 1.7% Tensile strain 1.475 ksi√in Fracture toughness, K_{IC} Strain energy release rate, G_{1C} 3.88 in-lb/in² Gel Time at 350°F 13 minutes

Availability

HexPly[®] 8552 has variations and is available on a wide range of reinforcement types.

Resin Variations

8552: Standard version, toughened 350°F cure epoxy

8552ATL: Lower tack for automated tape layup

8552S: Solvated tower manufacture

Reinforcement Types					
Glass Fabrics	Aramid Fabric				
Glass Tapes	Quartz Fabric				
Carbon Fabrics	Polyester Fabric				
Carbon Tapes	Ceramic Fabric				
Carbon Towpreg	Metal Fabric				
HexMC					

Typical Physical Properties

	Material Description	Carbon Tapes	Carbon Fabrics	Glass Tapes	
Prepreg	% Resin Content	33-38	32-42	34-36	
	% Flow	10-22	8-22	16-21	
	% Volatiles	1.0 max	1.5 max	1.0 max	
	Gel (min)	12-22	12-22	12-22	

Mechanical Properties

Property	Temp°F	Condition	AS4	IM7	A193- PW	A280- 5H	SGP196- PW	SGP370- 8H	S2GL
0° Tensile strength, ksi	-67	Dry	300	373	111	120	142	140	-
0° Tensile modulus, msi	-67	Dry	19.4	23.7	9.5	10.2	12.3	12.5	-
0° Tensile strength, ksi	77	Dry	310	395	120	127	158	147	251
0° Tensile modulus, msi	77	Dry	19.6	23.8	9.8	9.7	12.3	12.4	6.53
0° Tensile elongation, %	77	Dry	1.55	1.62	-	-	-	-	3.87
0° Tensile strength, ksi	195	Dry	293	368*	116	131	-	-	-
0° Tensile modulus, msi	195	Dry	19.1	23.7*	9.6	10	-	-	-
90° Tensile strength, ksi	-67	Dry	9.73	9.60	103	109	125	131	-
90° Tensile modulus, msi	-67	Dry	1.50	1.46	9.6	9.7	11.6	11.7	-
90° Tensile strength, ksi	77	Dry	9.27	9.3	115	116	137	139	-
90° Tensile modulus, msi	77	Dry	1.39	1.70	9.5	9.5	11.6	11.7	-
90° Tensile strength, ksi	200	Dry	-	-	111	112	142*	130*	-
90° Tensile modulus, msi	200	Dry	1.22	1.50	9.8	9.4	11.5*	11.5*	-
Major Poisson's Ratio, tension	77	Dry	0.302	0.316	-	-	-	-	-
± 45 Inplane shear	77	Dry	16.6	17.4	-	15.9	18.3	14.6	-
± 45 Inplane shear	200	Dry	15.2	15.4*	-	-	15.5*	13.1*	-
Major Poisson's Ratio, compression	77	Dry	0.335	0.356	-	-	-	-	-
0° Compression strength, ksi	-67	Dry	253	292	139	-	-	-	-
0° Compression modulus, msi	-67	Dry	18	20.5	8.7	-	-	-	-
0° Compression strength, ksi	77	Dry	222	245	128	134	-	-	217
0° Compression modulus, msi	77	Dry	18.6	21.7	8.7	9.3	-	-	6.6
0° Compression strength, ksi	195	Dry	184	215	110	109	-	-	-
0° Compression modulus, msi	195	Dry	17.7	23.5	8.8	9.7	-	-	-
0° Compression strength, ksi	160	Wet	203	-	102	-	-	-	-
0° Compression modulus, msi	160	Wet	17.0	-	8.6	-	-	-	-
0° Compression strength, ksi	195	Wet	184	173♥	85	74	-	-	-
0° Compression modulus, msi	195	Wet	18.1	20.7♥	-	9.9	-	-	-
Fill compression strength, ksi	-67	Dry	51.4	55.3	127	150	124	132	-
Fill compression modulus, msi	-67	Dry	1.56	1.53	8.7	9.2	-	-	-
Fill compression strength, ksi	77	Dry	38.9	44.2	127	129	116	121	-
Fill compression modulus, msi	77	Dry	1.43	1.82	9	9.1	10.4	10.5	-
Fill compression strength, ksi	195	Dry	-	-	114	-	103*	96*	-
Fill compression modulus, msi	195	Dry	-	-	8.9	-	10.6*	10.5*	-
Fill compression strength, ksi	77	Wet	-	34.2	116	-	95	94	-
Fill compression strength, ksi	160	Wet	-	24.6**	101	-	81**	88**	-
Fill compression strength, ksi	195	Wet	19.7♥	19♥	87	-	87*	-	-
Compression after impact, ksi									
after 500 in-in-lb/in impact	77	Dry	50	-	-	-	-	-	-
after 1,500 in-in-lb/in impact	77	Dry	32	34	-	-	-	-	-
after 2,000 in-in-lb/in impact	77	Dry	28	-	-	-	-	-	-
after 2,500 in-in-lb/in impact	77	Dry	27	-	-	-	-	-	-

Bold - 200° **Bold*** - 220° **Bold**** - 180° **Bold ♥** - 250°

Mechanical Properties

Property	Temp°F	Condition	AS4	IM7	A193- PW	A280- 5H	SGP196- PW	SGP370- 8H	S2GL
0° Short beam shear, ksi	-67	Dry	23.8	21	14.6	-	-	-	-
0° Short beam shear, ksi	77	Dry	18.5	19.9	12.2.	11.4	12.7	13	14.1
0° Short beam shear, ksi	195	Dry	14.7♥	13.6*	10.2	10	10*	10.8*	-
0° Short beam shear, ksi	77	Wet	16.9	16.7	10.9	10	11.6	12.1	-
0° Short beam shear, ksi	160	Wet	12.2	11.6**	10.4	-	8.8**	9.1**	-
0° Short beam shear, ksi	195	Wet	8.25♥	8.25♥	8.5	-	-	-	-
Fill short beam shear, ksi	-67	Dry	-	-	10.8	13.7	-	-	-
Fill short beam shear, ksi	77	Dry	-	-	11.8	11.7	-	-	-
Fill short beam shear, ksi	195	Dry	-	-	10.2	-	-	-	-
Fill short beam shear, ksi	77	Wet	-	-	11.4	-	-	-	-
Fill short beam shear, ksi	195	Wet	-	-	8.5	-	-	-	-
0° Flexural strength, ksi	77	Dry	274	270	-	150	165	164	233
0° Flexural modulus, msi	77	Dry	18.4	22	-	8.5	11.1	10.8	6.38
Quasi-Isotropic 25/50/25									
Tensile strength, ksi	77	Dry	107	104	-	-	-	-	-
OHT strength, ksi	77	Dry	63.5	62.1	-	51	56.7	58.3	-
OHC strength, ksi	77	Dry	47.8	48.9	-	53.7	52.1	49.2	-
CAI strength, ksi	77	Dry	34.6	31	-	40.8	42.5	40	-
CBI strength, ksi	77	Dry	91.2	-	-	76.3	-	-	-

Bold - 200° **Bold*** - 220° **Bold**** - 180° **Bold ♥** - 250°

Cure Cycle

400 Temp Hold 120 ± 10 min 350 Pressure Temperature °F and Pressure (psig) Vacuum 300 3-5°F/min Hold 250 Cool-down 30-60 min 2-5°F/min 225°F 200 Heat-up 3-5°F/min 150 100 Full vacuum 50 Vent vacuum when pressure reaches 30 psig 0 50 200 250 300 100 150 Time (min)

Cure Procedure

Autoclave

- 1. Apply full vacuum and 15 psig pressure.
- 2. Heat at 3-5°F/minute to 225°F.
- 3. Hold at 225°F for 30-60 minutes.
- 4. Raise pressure to 85-100 psig;
- 5. Vent vacuum when pressure reaches 30 psig.
- 6. Hold at $350^{\circ}F$ for 120 ± 10 minutes.
- 7. Cool at 2–5°F to 150°F and vent pressure.

Note: Alternative cure cycles available upon request.

Handling and Safety Precautions

Hexcel recommends that customers observe established precautions for handling resins and fine fibrous materials. Operators working with this product should wear clean, impervious gloves to reduce the possibility of skin contact and to prevent contamination of the material. Material Safety Data Sheets (MSDS) have been prepared for all Hexcel products and are available to company safety officers on request from the nearest Hexcel Sales Office.

Prepreg Storage Life

Tack Life: 10 days at RT (23°C/73°F) minimum

Out Life: 30 days at RT (23°C/73°F)

Shelf Life: 12 months at -18°C/0°F (from date of manufacture)

Definitions:

Tack Life: The time, at room temperature, during which prepreg retains enough tack for easy

component lay-up.

Out Life: The maximum accumulated time allowed at room temperature between removal from

the freezer and cure.

Shelf Life: The maximum storage life for HexPly prepreg, when stored continuously, in a closed moisture-

proof bag at -18°C/0°F. To accurately establish the exact expiration date, consult the box label.

Shipping

Prepreg is generally shipped in a sealed polyethylene bag in refrigerated transportation or in containers with dry ice.

Disposal of Scrap

Disposal of this material should be in a secure landfill in accordance with state and federal regulations.

Important

Hexcel Corporation believes, in good faith, that the technical data and other information provided herein is materially accurate as of the date this document is prepared. Hexcel reserves the right to modify such information at any time. The performance values in this data sheet are considered representative but do not and should not constitute specification minima. The only obligations of Hexcel, including warranties, if any, will be set forth in a contract signed by Hexcel or in Hexcel's then current standard Terms and Conditions of Sale as set forth on the back of Hexcel's Order Acknowledgement.

For more information

Hexcel is a leading worldwide supplier of composite materials to aerospace and other demanding industries. Our comprehensive product range includes:

- Carbon Fiber
- Reinforced Fabrics
- Carbon, Glass, Aramid and Hybrid Prepregs
- RTM Materials

- HexTOOL[®] composite tooling material
- Structural Film Adhesives
- Honeycomb Cores
- Engineered Core

For US quotes, orders and product information call toll-free 1-800-688-7734. For other worldwide sales office telephone numbers and a full address list, please click here: http://www.hexcel.com/contact/salesoffices.

Copyright © 2013 – Hexcel – All Rights Reserved. ® HexWeb, Flex-Core, Tube-Core, Hexcel and the Hexcel logos are registered trademarks of Hexcel Corporation, Stamford Connecticut

February 2014

